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a b s t r a c t

We have investigated the contact between a metal and an organic/polymeric (o/p) material
and we have introduced a relation for carrier injection using Bardeen theory. A series of
narrow barriers is considered in the semiconductor side to account for the localized nature
of the carriers in the o/p material. As an application of the model, we have calculated the
hopping rate of carriers in terms of the contact parameters. Also, we have discussed the
hopping of carriers deep into the organic dielectric. Finally, we have explored the hopping
rate in practical contacts between polyfluorene-based polymers and different electrodes.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Theoretical study and modelling of the physical mecha-
nisms in organic devices is of prime importance to enhance
the device functionality [1–6]. Current injection across the
contact has been proven to have significant effect on de-
vice characteristics [7]. Energy difference between the Fer-
mi level of the electrode and the lowest unoccupied
molecular orbital (LUMO) or the highest occupied molecu-
lar orbital (HOMO) of the organic semiconductor forms an
injection barrier at the contact.

Clear understanding and modelling of contact between
the metal (m) and the organic/polymeric (o/p) semiconduc-
tor is not straightforward task to follow [7]. For instance,
even interfaces such as Ca/Alq3 (tris-8-hydroxyquinolato
aluminium) with no energy difference do not behave ohmic
[8,9]. The first cause of this difficulty is the different nature
. All rights reserved.
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of the carrier transport in organic materials in comparison
with the common semiconductors. Indeed, the parameters
of the contact would differ dramatically as they can be af-
fected by several causes such as the conditions in which
the sample prepared and the variety of the materials which
can be used. Also, the chemical reaction and interface
chemistry can considerably change and control the injec-
tion process across the contact [10].

Conventionally, the injection current in organic devices
is described by Fowler–Nordheim tunnelling, Richardson–
Schottky thermionic emission, and taking into account
the backflow interface recombination [7,9,11]. Further-
more, the effect of low mobility in organic semiconductors
can be considered using the thermionic emission–diffusion
theory of Crowell and Sze [11,12].

Nonetheless, employing these models in organic devices
is quite questionable as the nature of transport is different
in them; therefore, there have been several efforts to bring
some more realistic explanations. For instance, Arkhipov
and co-workers proposed a model describing the injection
as an initial hopping of carriers from the Fermi level in
metal into the electronic states of the organic material
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followed by diffusive escape from the image potential
[1,13]. This model takes into account the energetic disorder
in the dielectric by considering a Gaussain distribution.
However, more studies have been carried out to describe
the electrical and temperature dependency of the injection
in better agreement with the experiments. For instance,
Yang and co-workers considered conducting filaments for-
mation for proper modelling of the injection at low bias
voltages [9]. Moreover, Baldo and Forrest demonstrated
that to address the low temperature characteristic of the
injection properly, and the power-law behaviour, it is
essential to take into account the effect of interfacial di-
poles on broadening the energy distribution [14]. In latter
study, they modelled the injection by considering the po-
laron hopping. Indeed, they determined the unknown
parameters by fitting the modelling results with the exper-
imental data. Earlier, Bussac et al. considered all the effects
such as external field, space charges, and image force in
their model. They obtained the polaron hopping rate and
the current injection by calculating the overlap between
the evanescent wave function in the metal and the proper
extended state of the polymer [12]. In particular, they ex-
plored the Coulomb trapping of the bipolarons in the gener-
alized image potential and its effect on increasing the
schottky barrier at the interface. Later, they expanded their
injection relation by including a decay factor related to the
intermolecular tunnelling [15].

The present brief review of the literature demonstrates
there have been different approaches so far trying to de-
scribe the injection in organic devices. Occasionally, these
models get quite sophisticated. Moreover, there are some
parameters in these methods that their values are typically
estimated by data fitting between modelling and experi-
ment. Some examples are m0 the hopping rate [1,9,13], J0

the intermolecular overlap integral [14], gm the tunnelling
parameter between the electrode and the first molecular
monolayer [15].

In present paper, by considering only the major features
of an organic-conductor junction in a quantum-mechanics
problem, we present a simple method for derivation of an
injection relation describing the carrier transfer. Mainly,
we consider the localized nature of the carriers in the or-
ganic material and equivalently the presence of the narrow
barriers between each pair of nodes in the one-dimen-
sional potential profile. We formulate the carrier dynamics
in an appropriate form by using Bardeen tunnelling theory
and we calculate the carrier hopping rate quantitatively.
Also, we investigate the direct hopping of carriers deep
into the organic semiconductor.

In Section 2 , we introduce Bardeen theory following
Gottlieb and Wesoloski [16]. In Section 3, we apply the
theory to calculate the carrier transfer between two subsys-
tems containing band-like states. It points out the compat-
ibility of Bardeen method with the standard tunnelling
theory. Also, the result from this section in comparison with
the result for the metal–organic contact (Section 4) clarifies
the effect of the localized states. In Section 4, we derive a
relation for carrier injection across metal–organic contact.
Afterwards, in the last section, we examine the validity of
the theory by using the presented relation to model the
current density–voltage (J–V) characteristic of PFO-based
OLEDs. Finally, we present a quantitative investigation
concerning hopping frequency for practical contacts. It
includes the dependency of the hopping rate on the height
and width of the barrier. Also, we discuss the injection deep
into the organic dielectric.

2. Bardeen tunnelling approach

Five decades ago, Bardeen presented a theory to charac-
terize tunnelling current between two systems separated
by a potential barrier [17]. To develop the theory, he as-
sumed the tunnelling caused by scattering events that
transfer the carrier across the barrier [16]. Bardeen theory
has been used successfully to describe phenomena such as
tunnelling current between a scanning tunnel microscope
(STM) tip and a sample [16,18,19], electron transmission
through molecular structures [20], and tunnelling in a me-
tal oxide semiconductor (MOS) structure [21].

Considering a potential profile illustrated in Fig. 1a and
assuming a particle placed in one side of the potential, the
objective is to find the tunnelling probability and the par-
ticle occupation on the other side of the system. The total
Hamiltonian, Htot, and its corresponding wave function,
w(x,t), satisfy the Schrödinger equation below:

Htun
tot wðx; tÞ ¼ � h2

2m
r2wðx; tÞ þ VðxÞwðx; tÞ ¼ i�h

@

@t
wðx; tÞ;

ð1Þ

where V(x) represents the whole system potential. To ar-
rive easily to the answer without solving the Eq. (1), we as-
sume the system has been formed by connecting two
separated systems (Fig. 1b) which have been brought close
together at a later time. According to Bardeen theory, we
assume that we know the behaviour of the two subsystems
separately. Therefore, we consider um the eigenfunction
and Em the eigenenergy of the first subsystem and wn the
eigenfunction and En the eigenenergy of the other system
as the known solutions of the corresponding Schrödinger
equations as follows (Fig. 1b):

Hmum ¼ �
�h2

2m
r2um þ V0lum ¼ Emum; ð2Þ

Hnwn ¼ �
�h2

2m
r2wn þ Vhnwn ¼ Enwn; ð3Þ

where Hm and Hn represent the Hamiltonian of the two
subsystems. Also, we define V0l and Vhn, the potential pro-
files to be:

V1 ¼ V0l ¼ V0s ¼
VðxÞ 0! s

0 s! n; elsewhere

�

V2 ¼ Vhn ¼ Vsn ¼
0 0! s; elsewhere

VðxÞ s! n

� ð4Þ

where, for simplicity, we have assumed the arbitrary
points, l and h, showing the same point called s. Let us sup-
pose the particle initially occupies the subsystem ‘n’, so we
can write down w(x,t) the whole system wave function as
follows [17]:

wðx; tÞ ¼ e�
iEnt

�h wn þ
X

amðtÞum ð5Þ



Fig. 1. Potential profiles which are used to explain the Bardeen tunnelling theory and to derive the relation formulating the injection of carriers in metal–
organic interfaces. (a) A potential profile including a barrier. The barrier separates the profile into two parts. Initially, we place a particle in one side. The
objective is to determine the transmission of the particle to the other side. (b) The potential profile is divided into two subsystems following the Bardeen
theory. (c) A one-dimensional potential profile representing a contact between two solids with band-like extended states. (d) According to Bardeen theory,
we separate the tunnelling system into two subsystems to calculate the transmission rate. (e) The proposed energy potential profile for a metal–organic
interface. Note the width and height of the barriers and wells are not sketched in scale. (f) Dividing the potential profile of metal–organic contact into two
subsystems to calculate carrier transmission, the subsystem m represents the metal side and the subsystem n shows the semiconductor side.
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By taking the product of <um| in w above Eq. (5), we can
approximately calculate d|am(t)|2/dt the carrier transmis-
sion rate between the subsystems ‘n’ and ’m’. In calculation,
we employ the whole system time-dependent Schrödinger
Eq. (1) and we assume um and wn are nearly orthogonal.
Finally, we obtain [16,17,20]:

d
dt
jamðtÞj2 ¼

2p
�h

M2ffmð1� fnÞ � fnð1� fmÞgdðEm � EnÞ; ð6Þ
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where M2 = |<um|H � Hn|wn>|2 the matrix element plays a
key role in the transmission rate calculation and fi is the
Fermi–Dirac distribution function of the subsystem ‘i’.
Taking into account that wn and its derivative vanishes
inside the other subsystem ‘m’, we can write the matrix
element as [22,16]:

M ¼
Z

u�mðH � HnÞwndx ¼ � �h2

2m
u�m

@

@x
wn � wn

@

@x
u�m

� �����
x¼s

:

ð7Þ

The next step is to evaluate the matrix element. In Sec-
tion 3, we calculate the M for a simple case and we com-
pare the result with the standard tunnelling method.

3. Comparing Bardeen tunnelling method with the
standard tunnelling theory

Fig. 1c pictures the potential profile used to compare
the results of the two tunnelling methods. This profile for
instance can represent the contact between two conduc-
tors. In standard tunnelling theory, we start the calculation
by writing the wave function as follows:

wðxÞ ¼
Aeik1x þ Be�ik1x x � a
Cejx þ De�jx a � x � b

Eeik2x þ Fe�ik2x b � x

8><
>: ; ð8Þ

where k1 = (2me(E � Ec1)/⁄2)1/2, j = (2me(Vmax � E)/⁄2)1/2,
and k2 = (2me(E � Ec2)/⁄2)1/2. E is the carrier energy, me the
carrier mass, and ⁄ the Planck constant divided by 2p. The
parameters Ec1, Ec2, and Vmax describe the potential profile
and are marked in Fig. 1c. Taking into account the continu-
ity of the wave function and its derivative; we can calculate
the coefficient A in terms of coefficients E and F [23]:

A ¼þ 1
4

e�ik1aþik2b 1þ j
ik1

� �
1þ ik2

j

� �
e�jðb�aÞE

þ 1
4

e�ik1aþik2b 1� j
ik1

� �
1� ik2

j

� �
ejðb�aÞE

þ 1
4

e�ik1a�ik2b 1þ j
ik1

� �
1� ik2

j

� �
e�jðb�aÞF

þ 1
4

e�ik1a�ik2b 1� j
ik1

� �
1þ ik2

j

� �
ejðb�aÞF: ð9Þ

We suppose the particle initially occupies the left side
of the potential; therefore, F vanishes and the transmission
coefficient from the left to the right side becomes:

T�1¼ E
A

� ��1 k2

k1

� ��1=2

¼ þ1
4

e�ik1aþik2b 1þ j
ik1

� �
1þ ik2

j

� �
e�jðb�aÞ

�

þ1
4

e�ik1aþik2b 1� j
ik1

� �
1� ik2

j

� �
ejðb�aÞ

�
k2

k1

� ��1=2

: ð10Þ

If j(b � a) > 1, then the transmission probability reduces
to:

jTj2 ¼ E
A

����
����

2 k2

k1

����
���� ¼ ð4jÞ2k1k2e�2kðb�aÞ

ðk1kþ k2kÞ2 þ ðk1k2 � k2Þ2
; ð11Þ
and for k = k1 = k2, it ends to:

jTj2 ¼ E
A

����
����

2 k2

k1

����
���� ¼ ð4kjÞ2e�2jðb�aÞ

ðk2 þ j2Þ2
: ð12Þ

On the other hand, to calculate the matrix element for
the Bardeen theory, the system is separated into two sub-
systems (Fig. 1d). We write down the wave functions um

and wn in a middle point within the potential barrier called
s, by using:

umðxÞ ¼
Aexpðik1xÞ þ Bexpð�ik1xÞ 0 < x < a

Dexpð�jxÞ a < x

�

wnðxÞ ¼
Eexpðik2xÞ þ F expð�ik2xÞ x > b

C expðjxÞ b > x > 0

�
;

ð13Þ

where we have vertically shifted the potential profile to
simplify the calculation (Fig. 1d). By considering the conti-
nuity of the wave function and its derivative at the proper
points, we can calculate the coefficients D and C in terms of
the coefficients A and F, respectively:

D ¼ 2eik1aþja ik1

ik1 � j
A; C ¼ 2eik2b�jb ik2

ik2 � j
F; ð14Þ

Therefore, M2 becomes:

M2¼ � �h2

2m

 !
ð2jÞ2jFj2jAj2

� ð4k1k2Þ2

ðj2þk1k2Þ2þj2ðk2�k1Þ2

 !
exp �2jðb�aÞð Þ; ð15Þ

and for k = k1 = k2, it leads to:

M2 ¼ � �h2

2m

 !2
ð4jkÞ2e�2jðb�aÞ

ðj2 þ k2Þ2

 !
ð2kÞ2jFj2jAj2: ð16Þ

The term (4jk)2exp(�2j(b � a))/(j2 + k2)2 has been ap-
peared in both M2 and |T|2 indicating the analogy between
the two methods. However, by employing the Bardeen
theory, one can directly obtain the time dependency of
the carrier transmission.

In Section 4, we apply the Bardeen theory to treat the
carrier injection across an m–o/p contact.

4. Current carrier injection at a metal–organic interface

Fig. 1e sketches schematically the potential profile,
which governs the carrier dynamics in an m–o/p contact.
Naturally, a barrier appears between the electrode and
the organic solid. Furthermore, the localized nature of the
carriers in the organic semiconductor implies that they
are confined in potential wells in the organic material.
Consequently, there are narrow barriers between each pair
of sites in the one-dimensional model of the organic semi-
conductor preventing from extended-state formation.
Therefore, an injected carrier should tunnel through these
barriers to get to the destination node. The proposed po-
tential profile includes the main features of the contact,
which are necessary to investigate the injection. According
to the Bardeen theory, to determine the dynamics of the
particle, it is enough to specify the wave functions of the
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two subsystems at one point within the barrier. Therefore,
first, we divide the contact potential into two parts exactly
next to the organic node which is the destination of the in-
jected carrier. Again, we name the wave functions repre-
senting the electrode and the organic part as um and wn,
respectively (see Fig. 1f). In one dimension, we can express
these functions in terms of plane waves. At entering points
into the barrier, the wave functions equal:

umðxÞ ¼
AexpðikmxÞ þ Bexpð�ikmxÞ x : 0�

Dexpð�j0xÞ x : 0þ

�
! umðxÞj0þ

¼ 2
ikm

ikm � j0

� �
Aeikmaþj0ae�j0xða! 0Þ

wnðxÞ ¼
EexpðiknxÞ þ F expð�iknxÞ x : xþn

C expðjxÞ x : x�n

�
! wnðxÞjx�n

¼ 2
ikn

ikn � j

� �
Fe�iknb�jbe�jxðb! xnÞ; ð17Þ

where km , kn, j, and j0 denote carrier wave numbers in the
electrode, in the organic node, in the space between two
nodes inside the organic solid, and within the physical bar-
rier respectively. Nevertheless, by some algebraic manipu-
lation, we can evaluate the both wave functions at one
point, namely x�n . If the potential altitude remained
unchanged through the barrier region, the wave function
amplitude would decay exponentially:

umðx�n Þ=umð0
þÞ ¼ e�j0L; ð18Þ

where L is the barrier width. However, the barrier does not
obey a known curvature. To calculate how the um decays
from 0+ to x�n , we can separately consider the effect of
the narrow barriers and the slow variation of the potential.
Therefore, by using the JWKB approximation and neglect-
ing the back-flowing wave function, we can write:

umðx�n Þ=umð0
þÞ¼a0an�1expðiDÞexp

� �
Z xn

0
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me

�h2 ðV
0ðx0Þ�EÞ

s
h V 0ðx0

 �

�EÞ
 !

;

ð19Þ

where V0 represents the potential profile without the nar-
row barriers and E is the tunnelling energy and D the total
phase shift. Also, a shows the amplitude attenuation caused
by passing through the narrow barriers in the organic
material. a equals exp{�⁄�1(2me(V

barrier
0�0 -E)½)(Lbarrier

0�0 )} in
which me is the electron mass, Vbarrier

0�0 the altitude of the
internal effective barrier between organic molecules, and
Lbarrier

0�0 (Lbarrier in the Fig. 1e) the width of the barrier. The
term a0 is the same as exp(�j(b � a)) in relation (15) and
represents the attenuation caused by the barrier between
the metal and the organic solid. Plugging wn and um into
the Eq. (7) leaves:

M2 ¼ ��h2

2m

 !2

ðjþ j0Þ2jFj2jAj2

� ð4kmknÞ2

ðjj0 þ kmknÞ2 þ ðjkm � j0knÞ2

�ða0Þ2ðan�1Þ2expð�2dðxnÞÞ; ð20Þ
where d(xn) =
R

dx0⁄�1(2me(V0(x0) � E))1/2h(V0(x0) � E) is an
integration from 0 to xn. The term exp(�2d(xn)) includes
the effect of slow variation in potential profile caused by
external filed, space charges, and image potential and so
on. We have substituted 2j by (j + j0), because the
calculation using wn leads to 2j0. Finally, we can write
the rate of the carrier injection into the nth layer inside
the organic solid as follows:

d
dt

nn¼
d
dt

X
m

jamðtÞj2¼q
2p
�h

M2ff �nng¼vnff �nng;

vn¼v0a2n�2expð�2dðxnÞÞ;

v0¼
2p
�h

q
Lwell

� �
� �h2

2me

 !2
ð4kmknÞ2ðjþj0Þ2

ðjj0 þkmknÞ2þðjkm�j0knÞ2
ða0Þ2;

ð21Þ

where q is the metal density of states per unit length and
Lwell the carrier delocalization length in the organic semi-
conductor. The term mn has the unit of s�1 and expresses
the hopping rate into the nth layer inside the organic mate-
rial. This quantity and in particular m0 play important role
in models describing the injection in organic devices. In
Section 4, we will quantitatively calculate the hopping fre-
quency for the contact between polyfluorene (PFO) and
some conductors. We would like to mention our model is
largely inspired by the one developed by Bussac and
Zuppiroli at EPFL Lausanne [15,24]. However, its originality
resides in the use of the Bardeen approach, which allow for
estimating the injection of charge carriers deep into the
organic semiconductor. This is in a different manner
compared with the model proposed by Bässler et al. at
Philipps-University Marburg [1,13].

5. Results

To examine the presented injection relation, we calcu-
lated the values of m0 for contacts in some polyfluorene-
based OLEDs. We inserted these values into an OLED
numerical code, called MOLED [25], to simulate the J–V
characteristics of the devices and compared the results
with experimental measurements. To fabricate the devices,
poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) or poly [(9,9-
di-n-octylfluoreneyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-
4,8-diyl)] (F8BT) was spin-casted onto an anode electrode
and then covered by thermal evaporating of aluminium
(Al). The thickness of the active polymer was 80–90 nm
and of the aluminium cathode electrode more than
250 nm. The anode was comprised of indium tin oxide
(ITO) coated poly(ethylene terephthalate) (PET) sheets.
We coated a �60 nm thin layer of poly (3,4-ethylendioxy-
thiophene) (PEDOT):poly(styrenesulfonate) (PSS) onto the
ITO layer to facilitate hole injection. All the materials were
purchased from Sigma–Aldrich. We recorded the electrical
characteristics of the devices by means of a Keithley238
source-measurement unit. Also, the thicknesses of the
films were measured using a Dectak profilometer.

Aluminium is a high work-function metal which makes
holes to be the dominant carriers in the device. Indeed, the
choice of polymers with high ionization potentials implies
the devices operate in injection-limited current regime and



Table 1
Parameters used in the model and the hopping
frequencies calculated for the blue diode (PFO).
ELUMO is the energy of the lowest unoccupied
molecular orbital in polymer and EHOMO the
energy of the highest occupied molecular orbital
[26]. We used ELUMO to calculate a0 for injection
when carriers leaving the polymer and to calcu-
late j as well. Also, we considered the Fermi
energy in polymer to be (ELUMO + EHOMO)/2 which
used to calculate kn. We employed the Poole–
Frenkel mobility type for polyfluorene [9]. D is the
thickness of the active polymer.

Parameter Value

ELUMO 2.2 eV
EHOMO 5.8 eV
l0_p 1 � 10–5 cm2/Vs
l0_n 3 � 10–6 cm2/Vs
F0_p 6 � 105 V/cm
F0_n 1 � 107 V/cm

Lbarrier
m�o

1.05 nm

a2 0.3
D 85 nm

VAnode�HOMO
0

1.39 � 108 s�1

VHOMO�Cathode
0

1.10 � 109 s�1

VCathode�LUMO
0

2.12 � 106 s�1

VLUMO�Anode
0

1.27 � 109 s�1

Table 2
Parameters and calculated hopping frequencies
for the green diode (F8BT). Note the mobility of
carriers in F8BT was assumed to be constant [27].

Parameter Value

ELUMO 3.3 eV
EHOMO 5.8 eV
l�p 4 � 10–4 cm2/Vs
l�n 1 � 10–4 cm2/Vs

Lbarrier
m�o

0.93 nm

a2 0.3
D 85 nm

VAnode�HOMO
0

7.29 � 107 s�1

VHOMO�Cathode
0

3.31 � 109 s�1

VCathode�LUMO
0

2.90 � 107 s�1

VLUMO�Anode
0

3.51 � 108 s�1

Table 3
We used the Fermi energies to calculate the
Fermi vectors, km, and to calculate the density
of states in electrodes. Also, we employed the
work-functions to calculate j0 .

Parameter Value (eV)

EFAl 11.7
EFAnode 9.4
WfAl 4.28
WfAnode 5.20
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in particular the parameters of the anode-polymer inter-
face control the electrical characteristic of the devices in
forward bias. In contrast to devices with small energy bar-
riers in which carriers can jump deep into the semiconduc-
tor and space-charge limited current (SCLC) flows through
the device. So the role of interface parameters begins to
fade and the device characteristic is scaled with other
parameters such as the thickness of the polymer film. This
situation describes for instance a device based on poly
[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
(MEH-PPV) and shall be investigated elsewhere using our
model.

Tables 1 and 2 summarise some parameters we used to
model the blue and green devices respectively. Also, Table 3
tabulates the values of the Fermi energies and work-func-
tions of the electrodes. We considered dimers of fluorene
units form the charge carriers, so the delocalization length
of the carriers (Lwell) in PFO and also F8BT is set to 1.68 nm
as we assumed a line of 12 carbon–carbon bonds and each
bond 140 pm long. The interchain distance, however, is
fixed at 0.3 nm. Also, we set the barrier width to be around
1 nm. It is worth noting that we obtained similar results by
considering slightly different values for these parameters
i.e. 0.4 nm for the interchain distance or assuming a trimer
of fluorene units forms the charge carrier unit [28]. The cal-
culated hopping frequencies were summarised in Tables 1
and 2 as well. We see the hopping rate of holes from anode
electrode to polymers is around 10+8 s�1 for these devices.
Fig. 2a and b compares the results of simulation and exper-
iment for PFO- and F8BT-based devices respectively. The
two devices show similar characteristics as the ionization
potentials of the polyfluorene and polyfluorene-co-benzo-
thiadiazole are similar (�5.8 eV). It is worth mentioning
that we took the values of mobility for the emissive
materials from the literature. In particular, we employed
the Poole–Frenkel type mobility for PFO [9] whilst we used
constant values for the mobility of carriers in F8BT [27] and
we see there is a good agreement between experiment and
modelling in both cases. It is possible to consider a field-
dependent mobility for F8BT-based device as well and ob-
tain reasonable results, however, as we mentioned earlier
it is the contact that governs the device characteristic.

As we noted earlier, hopping of carriers has been used
to model electrical characteristic in organic devices. Table 4
presents some values of hopping frequencies which have
been assumed or calculated to describe injection in OLEDs.
In Table 5, we summarise the calculated values according
to our model for hopping rate of contacts which were pre-
sented in Table 4. We mostly took the values of parameters
from the corresponding references to calculate the rates of
hopping. For small molecule materials, we assumed the
delocalization length to be 0.4 nm [3]. Table 5 shows that
hopping rate depends strongly on the width of the barrier,
so we need to know the accurate value of the barrier width
to be able to determine the hopping frequency precisely
and to provide a reasonable judgment.

Now let us investigate the dependency of the hopping
frequency on the parameters of the contact. Firstly, we
consider the effect of width and height of the barrier. We
expect that as the height or width of the physical barrier
increases the hopping frequency decreases, which conse-
quently leads in reduction of the injection current. Fig. 3
draws the dependency of m0 on the height of the barrier
for contacts between PFO with three different cathode
metals. The graph confirms the reduction in m0 due to



Fig. 2. The J–V characteristics for OLEDs based on PFO (a) and F8BT (b)
with Al as the cathode electrode. The curves compare the experiment
(filled symbols) with modelling (hollow symbols). The insets represent
the results in logarithmic scale. For our green and blue devices the J–V
characteristics are quite identical. Note current density is higher than its
general trend in low bias voltages (the inset in figure b). Similar
discrepancy occurs in PFO-based device; however it is not recorded and
presented here. Meng and co-workers showed that one can model this
phenomenon by introducing filament conduction into the injection
relation [9].

Table 4
The values of hopping rates which have been used in modelling of injection
mechanism in OLEDs. The models developed or employed by different
authors are not identical. Please see the references for details.

Reference Contact Hopping rate (s�1)

[9] Ca/PFO 1012

[14] Al/Alq3 1013

[25] ITO/CuPc 4 � 107

[25] Al/LiF/Alq3 4 � 107

Table 5
Employing the model developed here to calculate the hopping rate for the
contacts mentioned in Table 4. The hopping rate strongly depends on
barrier width. Yang et al. considered the distance a from the electrode to
the first available hopping site in the bulk to be a = 1.67 nm [9]. Also, Houili
and co-workers considered the separation between the anode and CuPc and
also between Alq3 and the cathode to be 0.33 and 1.33 nm respectively
[25]. Moreover, for more appropriate calculation of hopping rate when
there is a dipole moment between the organic material and the electrode,
for instance a thin layer of LiF, we can replace the square potential barrier
with a trapezium one in the calculation of a0 .

0.4 nm 0.7 nm 1.2 nm

Ca/PFO 1.1 � 1013 s�1 5.8 � 1010 s�1 9.9 � 106 s�1

Al/Alq3 9.1 � 1012 s�1 1.6 � 1010 s�1 3.9 � 105 s�1

ITO/CuPc 1.6 � 1013 s�1 4.1 � 1010 s�1 2.0 � 106 s�1

Al/LiF/Alq3 1.8 � 1013 s�1 5.6 � 1010 s�1 3.6 � 106 s�1

Fig. 3. The dependency of m0 on the width and height of the barrier
between cathode electrode and the organic semiconductor (i.e. polyflu-
orene). The hopping rate will change several orders of magnitude if there
is an expansion in the width or height of the barrier. We took the values
for the work-function from Bernius et al. [29] and for the Fermi vectors
and the Fermi energies from Ashcroft and Mermin [30]. We assumed the
delocalization length of carriers to be 1.68 nm. For very thin barriers, m0 is
mostly determined by the width of the barrier; however as we will show
in Fig. 5, hopping is restricted to the first few nearest sites when the
height of the barrier is considerable.
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expansion of barrier in width and also in height; however,
the dependency on width is stronger.

In Section 4, we mentioned the model accounts for di-
rect injection deep into the organic semiconductor. One
of the parameters which controls the probability of direct
injection beyond the nearest node is a. Fig. 4 shows hop-
ping frequency versus the distance of the nodes from the
electrode for different values of a for a contact between
PFO and PEDOT:PSS with ub = 0.6 eV. Here, we assumed
the potential profile without the narrow barriers had a
form of U(x) = ub � e2/(16pee0x) � eFx where e0 is the vac-
uum permittivity, e the dielectric constant, e the elemen-
tary charge, and ub the bare potential barrier. Also, the
external electric field, F, was considered to be 2 � 10+6 V/
cm. From Fig. 4, we see the hopping to the layers beyond
the nearest node is not negligible and should be considered
especially for the values of a close to one.

Moreover, injection into deep layers inside the organic
material is controlled by ub and external electric field via
the term exp(�2d(xn)). In Fig. 5, we compare the hopping
rate into different layers of the semiconductor for contacts
between PFO and different cathode metals. For these con-
tacts, the value of a does not vary as the semiconductor
has been kept unchanged whereas ub increases as we
employ metals with higher work function. Again, a fixed
electric field of 2 � 10+6 V/cm is considered. The curves in



Fig. 4. The hopping rate of carriers into internal layers of the organic
semiconductor. We investigated the contact between PFO and PEDOT:PSS
with ub of 0.6 eV when an external field of 2 � 106 V/cm is applied. Here
and in the following figures, we have considered again the interchain
distance to be 0.3 nm. For cases in which the barrier is low (ub

approaches zero) and the carriers inside the organic material are coupled
well together (a approaches one), the hopping of the carriers deep into
the semiconductor plays significant portion in the injection.

Fig. 5. The hopping rate of electrons into deep layers inside the organic
material (mn) versus bare potential barrier (ub) for PFO in contact with
different metals. The match between the ELUMO and the electrode work-
function leads in strong coupling between the semiconductor and the
metal, even for states deep inside the conjugated polymer. In contrast, a
mismatch in energy levels restricts the hopping just to the first few sites
of the organic material. For PFO-based device, we assumed the Lm-o to be
1.05 nm.

Fig. 6. The mn versus applied bias for a contact between F8BT and Mg with
ub of 0.36 eV. The thickness of the film was considered to be 85 nm and
we assumed Lm-o = 0.93 nm. For low bias voltages, it is difficult for the
carriers to pass through the barrier, they just hop to the few nearest sites;
however, as we increase the bias voltage the barrier shrinks and carriers
can hop deep into the semiconductor.
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Fig. 5 suggest high potential barrier restricts the hopping of
carriers to the few close layers of the organic material;
however, for low barrier contacts, the direct injection into
internal layers has significant portion in the current
injection.

Finally, we investigate the dependency of hopping rate
on the applied bias. We expect the current density in-
creases as we increase the bias voltage. Fig. 6 draws the
hopping frequency deep into organic layers versus applied
bias for injection of electrons for a contact between F8BT
and magnesium (Mg) with potential barrier of
ub = 0.36 eV. The figure shows the rate of hopping of carri-
ers deep into organic material grows which leads to an
increase in injection current. Nevertheless, the injection
current is coupled to the transport of carriers within the
organic material via the term nn as well. Increase in exter-
nal field hastens the movement of carriers towards the
other electrode and causes the carriers leave the region
close to the electrode more frequently. This causes that
carrier density near the electrode decreases and so carrier
injection increases dynamically via the term f � nn.

6. Conclusion

In present paper, firstly, we introduced the Bardeen
tunnelling theory and we presented its correspondence
with the standard tunnelling theory. Next, we used the
theory to investigate the current carrier across an organ-
ic-conductor junction. Then, the model was validated by
comparing the simulation results with the experiments
for devices with injection-limited current. The parameters
in the model were rather theoretical values (like wave
numbers); however, the results were in good agreement
with the experiments. The main feature of presented mod-
el was the insight given about the physics of the injection.
In particular, we quantitatively determined the hopping
rate of the carriers deep into the organic semiconductor
for practical contacts.
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